Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Front Cardiovasc Med ; 11: 1349417, 2024.
Article in English | MEDLINE | ID: mdl-38525191

ABSTRACT

Introduction and objectives: Mitochondrial pyruvate carrier (MPC) mediates the entry of pyruvate into mitochondria, determining whether pyruvate is incorporated into the Krebs cycle or metabolized in the cytosol. In heart failure (HF), a large amount of pyruvate is metabolized to lactate in the cytosol rather than being oxidized inside the mitochondria. Thus, MPC activity or expression might play a key role in the fate of pyruvate during HF. The purpose of this work was to study the levels of the two subunits of this carrier, named MPC1 and MPC2, in human hearts with HF of different etiologies. Methods: Protein and mRNA expression analyses were conducted in cardiac tissues from three donor groups: patients with HF with reduced ejection fraction (HFrEF) with ischemic cardiomyopathy (ICM) or idiopathic dilated cardiomyopathy (IDC), and donors without cardiac pathology (Control). MPC2 plasma levels were determined by ELISA. Results: Significant reductions in the levels of MPC1, MPC2, and Sirtuin 3 (SIRT3) were observed in ICM patients compared with the levels in the Control group. However, no statistically significant differences were revealed in the analysis of MPC1 and MPC2 gene expression among the groups. Interestingly, Pyruvate dehydrogenase complex (PDH) subunits expression were increased in the ICM patients. In the case of IDC patients, a significant decrease in MPC1 was observed only when compared with the Control group. Notably, plasma MPC2 levels were found to be elevated in both disease groups compared with that in the Control group. Conclusion: Decreases in MPC1 and/or MPC2 levels were detected in the cardiac tissues of HFrEF patients, with ischemic or idiopatic origen, indicating a potential reduction in mitochondrial pyruvate uptake in the heart, which could be linked to unfavorable clinical features.

2.
Biomed Res Int ; 2023: 6152905, 2023.
Article in English | MEDLINE | ID: mdl-38027043

ABSTRACT

According to the World Health Organization, cardiovascular diseases (CVDs) are the leading cause of death worldwide across nearly all ethnic groups. Inherited cardiac conditions comprise a wide spectrum of diseases that affect the heart, including abnormal structural features and functional impairments. In Latin America, CVDs are the leading cause of death within the region. Factors such as population aging, unhealthy diet, obesity, smoking, and a sedentary lifestyle have increased the risk of CVD. The Latin American population is characterized by its diverse ethnic composition with varying percentages of each ancestral component (African, European, and Native American ancestry). Short tandem repeats (STRs) are DNA sequences with 2-6 base pair repetitions and constitute ~3% of the human genome. Importantly, significant allele frequency variations exist between different populations. While studies have described that STRs are in noncoding regions of the DNA, increasing evidence suggests that simple sequence repeat variations may be critical for proper gene activity and regulation. Furthermore, several STRs have been identified as potential disease predisposition markers. The present review is aimed at comparing and describing the frequencies of autosomal STR polymorphisms potentially associated with cardiovascular disease predisposition in Latin America compared with other populations.


Subject(s)
Cardiovascular Diseases , Genetics, Population , Humans , Latin America/epidemiology , Cardiovascular Diseases/genetics , Gene Frequency , Microsatellite Repeats , Disease Susceptibility
3.
Front Nutr ; 10: 1241017, 2023.
Article in English | MEDLINE | ID: mdl-37964928

ABSTRACT

Hypertension is one of the primary risk factors associated with cardiovascular diseases (CVDs). It is a condition that affects people worldwide, and its prevalence is increasing due to several factors, such as lack of physical activity, population aging, and unhealthy diets. Notably, this increase has primarily occurred in low and middle-income countries (LMICs). In Latin America, approximately 40% of adults have been diagnosed with hypertension. Moreover, reports have shown that the Latin American genetic composition is highly diverse, and this genetic background can influence various biological processes, including disease predisposition and treatment effectiveness. Research has shown that Western dietary patterns, which include increased consumption of red meat, refined grains, sugar, and ultra-processed food, have spread across the globe, including Latin America, due to globalization processes. Furthermore, a higher than recommended sodium consumption, which has been associated with hypertension, has been identified across different regions, including Asia, Europe, America, Oceania, and Africa. In conclusion, hypertension is a multifactorial disease involving environmental and genetic factors. In Latin America, hypertension prevalence is increasing due to various factors, including age, the adoption of a "Westernized" diet, and potential genetic predisposition factors involving the ACE gene. Furthermore, identifying the genetic and molecular mechanisms of the disease, its association with diet, and how they interact is essential for the development of personalized treatments to increase its efficacy and reduce side effects.

4.
Cardiol Res ; 14(5): 409-415, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37936622

ABSTRACT

Cardiac pathologies are among the most frequent causes of death worldwide. Regarding cardiovascular deaths, it is estimated that 5 million cases are caused by sudden cardiac death (SCD) annually. The primary cause of SCD is ventricular arrhythmias. Genomic studies have provided pathogenic, likely pathogenic, and variants of uncertain significance that may predispose individuals to cardiac causes of sudden death. In this study, we describe the case of a 43-year-old individual who experienced an episode of aborted SCD. An implantable cardioverter defibrillator was placed to prevent further SCD episodes. The diagnosis was ventricular fibrillation. Genomic analysis revealed some variants in the MYPN (pathogenic), GCKR (likely pathogenic), TTN (variant of uncertain significance), SCN5A (variant of uncertain significance), MYO6 (variant of uncertain significance), and ELN (variant of uncertain significance) genes, which could be associated with SCD episodes. In addition, a protein-protein interaction network was obtained, with proteins related to ventricular arrhythmia and the biological processes involved. Therefore, this study identified genetic variants that may be associated with and trigger SCD in the individual. Moreover, genetic variants of uncertain significance, which have not been reported, could contribute to the genetic basis of the disease.

6.
Front Neurol ; 14: 1183147, 2023.
Article in English | MEDLINE | ID: mdl-37251241

ABSTRACT

Introduction: Hearing loss is the most common sensory disability, and it is estimated that 50% of cases are caused by genetic factors. One of the genes associated with deafness is the eyes absent homolog 4 (EYA4) gene, a transcription factor related to the development and function of the inner ear. Emery-Dreifuss muscular dystrophy is a rare inherited disease characterized by atrophy and weakness of the humeroperoneal muscles, multi-joint contractures, and cardiac manifestations. It is inherited in an autosomal-dominant, X-linked, or less frequently autosomal recessive manner; one of the genes associated with EDMD is the emerin (EMD) gene. Case description: A total of two Ecuadorian siblings aged 57 (Subject A) and 55 (Subject B) were diagnosed with deafness and an unspecified type of muscular dystrophy based on family history and clinical findings. Next-generation sequencing (NGS) using the TruSight Cardio and Inherited Disease kits at the Centro de Investigación Genética y Genómica CIGG, Universidad UTE, was performed. The genetic analyses showed two mutations: a stop mutation in exon 11/20 (NM_004100.4:c.940G>T) of the EYA4 gene and a missense mutation in exon 6 (NM_000117.2:c.548C>G) of the EMD gene. Discussion and conclusion: The in silico predictions described the EYA4 variant as likely pathogenic and the EMD variant as a variant of uncertain significance (VUS). Moreover, an ancestry analysis was performed using 46 Ancestry Informative Insertion/Deletion Markers (AIM-InDels), and the ancestral composition of subject A was 46% African, 26.1% European, and 27.9% American Indian ancestry, whereas the ancestral composition of subject B was 41.3% African, 38.2% European, and 20.5% American Indian ancestry. The present case report describes two Ecuadorian siblings with a mainly African ancestral component, muscular dystrophy, and deafness phenotypes. Moreover, using next-generation sequencing (NGS), a mutation in the EMD and a novel mutation in EYA4 genes possibly associated with the subjects' phenotype were identified and discussed.

7.
Front Cardiovasc Med ; 10: 1141083, 2023.
Article in English | MEDLINE | ID: mdl-37025686

ABSTRACT

Introduction: Cardiac laminopathies are caused by mutations in the LMNA gene and include a wide range of clinical manifestations involving electrical and mechanical changes in cardiomyocytes. In Ecuador, cardiovascular diseases were the primary cause of death in 2019, accounting for 26.5% of total deaths. Cardiac laminopathy-associated mutations involve genes coding for structural proteins with functions related to heart development and physiology. Family description: Two Ecuadorian siblings, self-identified as mestizos, were diagnosed with cardiac laminopathies and suffered embolic strokes. Moreover, by performing Next-Generation Sequencing, a pathogenic variant (NM_170707.3:c.1526del) was found in the gene LMNA. Discussion and conclusion: Currently, genetic tests are an essential step for disease genetic counseling, including cardiovascular disease diagnosis. Identification of a genetic cause that may explain the risk of cardiac laminopathies in a family can help the post-test counseling and recommendations from the cardiologist. In the present report, a pathogenic variant ((NM_170707.3:c.1526del) has been identified in two Ecuadorian siblings with cardiac laminopathies. The LMNA gene codes for A-type laminar proteins that are associated with gene transcription regulation. Mutations in the LMNA gene cause laminopathies, disorders with diverse phenotypic manifestations. Moreover, understanding the molecular biology of the disease-causing mutations is essential in deciding the correct type of treatment.

8.
Front Cardiovasc Med ; 9: 1037370, 2022.
Article in English | MEDLINE | ID: mdl-36426223

ABSTRACT

Introduction: Genomic screening is an informative and helpful tool for the clinical management of inherited conditions such as cardiac diseases. Cardiac-inherited diseases are a group of disorders affecting the heart, its system, function, and vasculature. Among the cardiac inherited abnormalities, one of the most common is Wolff-Parkinson-White syndrome. Similarly, hypertrophic cardiomyopathy is another common autosomal dominant inherited cardiac disease. Hypertrophic cardiomyopathy is associated with an increased incidence of Wolff-Parkinson-White syndrome; reports have suggested that it could be caused by a mutation in the protein-coding gene PRKAG2, which encodes a subunit of the AMP-activated protein kinase. Case presentation: A 37-year-old Ecuadorian male (Subject A) with familiar history of bradycardia, cardiac pacemaker implantation, and undiagnosed cardiac conditions began with episodes of tachycardia, dizziness, shortness of breath, and a feeling of fainting. He was diagnosed with hypertrophic myocardiopathy and Wolff Parkinson White preexcitation syndrome. Furthermore, his cousin's son, an 18-year-old Ecuadorian male (Subject B), started suffering from migraine and tachycardia at any time of the day. He was diagnosed with hypertrophic myocardiopathy; his electrocardiogram showed a systolic overload. Next-generation sequencing and ancestry analyses were performed. A c.905G>A p.(Arg302Gln) mutation in the gene PRKAG2 and a mainly European composition were identified in both subjects. Conclusion: Genetic testing is a valuable tool as it can provide important information regarding a disease, including its cause and consequences, not only for single individuals but to identify at-risk relatives. Furthermore, NGS results could guide the physician into targeted therapy. In the present case report, a missense pathogenic Arg302Gln mutation in the PRKAG2 gene has been identified in two related Ecuadorian Subjects diagnosed with hypertrophic myocardiopathy and Wolff-Parkinson-White. The variant has not been reported in Latin America; hence, this is the first report of the Arg302Gln mutation in the PRKAG2 gene in mestizo Ecuadorian subjects with mainly European ancestry components.

9.
JACC Basic Transl Sci ; 7(6): 544-560, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35818504

ABSTRACT

Specialized proresolving mediators and, in particular, 5(S), (6)R, 7-trihydroxyheptanoic acid methyl ester (BML-111) emerge as new therapeutic tools to prevent cardiac dysfunction and deleterious cardiac damage associated with myocarditis progression. The cardioprotective role of BML-111 is mainly caused by the prevention of increased oxidative stress and nuclear factor erythroid-derived 2-like 2 (NRF2) down-regulation induced by myocarditis. At the molecular level, BML-111 activates NRF2 signaling, which prevents sarcoplasmic reticulum-adenosine triphosphatase 2A down-regulation and Ca2+ mishandling, and attenuates the cardiac dysfunction and tissue damage induced by myocarditis.

10.
Mol Ther Nucleic Acids ; 27: 838-853, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35141045

ABSTRACT

Urocortin-2 (Ucn-2) has demonstrated cardioprotective actions against myocardial ischemia-reperfusion (I/R) injuries. Herein, we explored the protective role of Ucn-2 through microRNAs (miRNAs) post-transcriptional regulation of apoptotic and pro-fibrotic genes. We determined that the intravenous administration of Ucn-2 before heart reperfusion in a Wistar rat model of I/R recovered cardiac contractility and decreased fibrosis, lactate dehydrogenase release, and apoptosis. The infusion of Ucn-2 also inhibited the upregulation of 6 miRNAs in revascularized heart. The in silico analysis indicated that miR-29a and miR-451_1∗ are predicted to target many apoptotic and fibrotic genes. Accordingly, the transfection of neonatal rat ventricular myocytes with mimics overexpressing miR-29a, but not miR-451_1∗, prevented I/R-induced expression of pro- and anti-apoptotic genes such as Apaf-1, Hmox-1, and Cycs, as well as pro-fibrotic genes Col-I and Col-III. We also confirmed that Hmox-1, target of miR-29a, is highly expressed at the mRNA and protein levels in adult rat heart under I/R, whereas, Ucn-2 abolished I/R-induced mRNA and protein upregulation of HMOX-1. Interestingly, a significant upregulation of Hmox-1 was observed in the ventricle of ischemic patients with heart failure, correlating negatively with the left ventricle ejection fraction. Altogether, these data indicate that Ucn-2, through miR-29a regulation, provides long-lasting cardioprotection, involving the post-transcriptional regulation of apoptotic and fibrotic genes.

11.
Circulation ; 144(25): 2021-2034, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34806902

ABSTRACT

BACKGROUND: Remodeling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulfate proteoglycans such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown. METHODS: Versican remodeling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5ΔCat). Proteomics was applied to study ECM remodeling in left ventricular samples from patients with HF, with a particular focus on the effects of common medications used for the treatment of HF. RESULTS: Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in patients with ischemic HF. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II infusion. In Adamts5ΔCat mice, angiotensin II infusion resulted in an aggravated versican build-up and hyaluronic acid disarrangement, accompanied by reduced levels of integrin ß1, filamin A, and connexin 43. Echocardiographic assessment of Adamts5ΔCat mice revealed a reduced ejection fraction and an impaired global longitudinal strain on angiotensin II infusion. Cardiac hypertrophy and collagen deposition were similar to littermate controls. In a proteomics analysis of a larger cohort of cardiac explants from patients with ischemic HF (n=65), the use of ß-blockers was associated with a reduction in ECM deposition, with versican being among the most pronounced changes. Subsequent experiments in cardiac fibroblasts confirmed that ß1-adrenergic receptor stimulation increased versican expression. Despite similar clinical characteristics, patients with HF treated with ß-blockers had a distinct cardiac ECM profile. CONCLUSIONS: Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart and that versican accumulation is associated with impaired cardiac function. A comprehensive characterization of the cardiac ECM in patients with ischemic HF revealed that ß-blockers may have a previously unrecognized beneficial effect on cardiac chondroitin sulfate proteoglycan content.


Subject(s)
ADAMTS5 Protein/metabolism , Extracellular Matrix/metabolism , Heart Failure/metabolism , Proteoglycans/metabolism , Animals , Heart Failure/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Proteomics
12.
Nat Metab ; 2(11): 1223-1231, 2020 11.
Article in English | MEDLINE | ID: mdl-33106688

ABSTRACT

Cardiomyocytes rely on metabolic substrates, not only to fuel cardiac output, but also for growth and remodelling during stress. Here we show that mitochondrial pyruvate carrier (MPC) abundance mediates pathological cardiac hypertrophy. MPC abundance was reduced in failing hypertrophic human hearts, as well as in the myocardium of mice induced to fail by angiotensin II or through transverse aortic constriction. Constitutive knockout of cardiomyocyte MPC1/2 in mice resulted in cardiac hypertrophy and reduced survival, while tamoxifen-induced cardiomyocyte-specific reduction of MPC1/2 to the attenuated levels observed during pressure overload was sufficient to induce hypertrophy with impaired cardiac function. Failing hearts from cardiomyocyte-restricted knockout mice displayed increased abundance of anabolic metabolites, including amino acids and pentose phosphate pathway intermediates and reducing cofactors. These hearts showed a concomitant decrease in carbon flux into mitochondrial tricarboxylic acid cycle intermediates, as corroborated by complementary 1,2-[13C2]glucose tracer studies. In contrast, inducible cardiomyocyte overexpression of MPC1/2 resulted in increased tricarboxylic acid cycle intermediates, and sustained carrier expression during transverse aortic constriction protected against cardiac hypertrophy and failure. Collectively, our findings demonstrate that loss of the MPC1/2 causally mediates adverse cardiac remodelling.


Subject(s)
Anion Transport Proteins/metabolism , Cardiomegaly/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Angiotensin II , Animals , Anion Transport Proteins/biosynthesis , Anion Transport Proteins/genetics , Cardiomegaly/pathology , Cell Proliferation , Citric Acid Cycle , Constriction, Pathologic , Female , Heart Failure/chemically induced , Heart Failure/metabolism , Heart Failure/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/biosynthesis , Mitochondrial Membrane Transport Proteins/genetics , Monocarboxylic Acid Transporters/biosynthesis , Monocarboxylic Acid Transporters/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pyruvic Acid/metabolism
13.
Methods Mol Biol ; 2110: 73-81, 2020.
Article in English | MEDLINE | ID: mdl-32002902

ABSTRACT

In pig-to-primate xenotransplantation, flow cytometry assays allow the examination of antibody reactivity to intact antigens in their natural conformation and location on cell membranes. Here we describe in detail the procedures of two flow cytometry assays to measure the antibody-mediated complement-dependent cytotoxicity (CDC) response or serum levels of IgG and IgM xenoantibodies. This information is key for understanding the rejection process of vascularized xenografts and finding strategies to overcome it.


Subject(s)
Antibodies, Heterophile/immunology , Complement Activation/immunology , Flow Cytometry , Heterografts/immunology , Transplantation, Heterologous , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Cytotoxicity, Immunologic , Flow Cytometry/methods , Graft Rejection/diagnosis , Graft Rejection/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Primates , Swine , Transplantation, Heterologous/adverse effects , Transplantation, Heterologous/methods
14.
Rev. esp. cardiol. (Ed. impr.) ; 72(11): 899-906, nov. 2019. tab, graf
Article in Spanish | IBECS | ID: ibc-190741

ABSTRACT

Introducción y objetivos Los valores plasmáticos de galectina-3 (Gal-3) están elevados y se correlacionan con la mortalidad total y cardiovascular en pacientes con insuficiencia cardiaca, pero su correlación con el pronóstico tras el trasplante cardiaco (TxC) es desconocida. El objetivo fue describir la tendencia evolutiva y el valor pronóstico de este biomarcador tras el TxC. Métodos Mediante enzimoinmunoensayo, se midieron las concentraciones plasmáticas de Gal-3 en muestras de suero de 122 receptores de TxC, antes y 1, 3, 6 y 12 meses después de este. Mediante regresión de Cox se analizó el valor pronóstico del valor plasmático de Gal-3 a los 12 meses del TxC. El objetivo primario del estudio fue la variable combinada muerte o disfunción del injerto. Resultados: Las concentraciones de Gal-3 disminuyeron progresivamente durante el primer año tras el TxC (medianas: pretrasplante, 19,1 ng/ml; 1 año postrasplante, 14,6 ng/ml; p<0,001). Los valores de Gal-3 1 año tras el TxC se asociaron con mayor riesgo de muerte o disfunción del injerto (HR por 1 ng/ml: 1.04; IC95%: 1,01-1,08; p=0,008). La capacidad predictiva del biomarcardor fue moderada: área bajo la curva ROC, 0,72 (IC95%: 0,60-0,82; p<0,001). Conclusiones Las concentraciones plasmáticas de Gal-3 disminuyeron progresivamente durante el primer año tras el TxC. Un valor plasmático elevado de Gal-3 1 año tras el TxC se correlacionó con un pronóstico adverso


Introduction and Objectives: Circulating galectin-3 (Gal-3) is elevated and significantly correlates with all-cause and cardiovascular mortality in patients with heart failure. However, the relationship between serum Gal-3 and heart transplant (HT) outcomes is unclear. The aim of this study was to describe the longitudinal trend and prognostic value of Gal-3 levels after HT. Methods: Banked serum samples were available from 122 HT recipients, collected before transplant and at 1, 3, 6, and 12 months posttransplant. Gal-3 levels in these serum samples were measured by enzyme immune assay. Multivariable Cox regression was performed to determine the prognostic value of 12-month posttransplant Gal-3 serum levels. The primary endpoint was the composite variable all-cause death or graft failure over long-term posttransplant follow-up. Results: Circulating Gal-3 concentration steadily decreased during the first year after HT (median values: pretransplant, 19.1 ng/mL; 1-year posttransplant, 14.6 ng/mL; P<.001). Circulating Gal-3 levels 1-year posttransplant were associated with an increased risk of all-cause death or graft failure (adjusted HR per 1 ng/mL, 1.04; 95%CI, 1.01-1.08; P=.008). The predictive accuracy of this biomarker was moderate: (area under the ROC curve, 0.72 (95%CI, 0.60-0.82; P<.001). Conclusions: Circulating Gal-3 steadily decreased during the first year after HT. However, 1-year posttransplant Gal-3 serum levels that remained elevated were associated with increased long-term risk of death and graft failure


Subject(s)
Humans , Male , Female , Middle Aged , Galectin 3/metabolism , Heart Failure/surgery , Heart Transplantation/statistics & numerical data , Graft Rejection/immunology , Biomarkers/analysis , Galectin 3/analysis , Prognosis , Retrospective Studies , Follow-Up Studies , ROC Curve , Risk Factors , Indicators of Morbidity and Mortality
15.
Neurosurgery ; 85(3): 423-431, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30060164

ABSTRACT

BACKGROUND: Insulin-like growth factor 1 (IGF-1) was found to stimulate Schwann cell mitosis. Exogenous IGF-1 may improve nerve regeneration after cryopreservation. OBJECTIVE: To evaulate the effect of intraneural administration of IGF-1 in cryopreserved nerve isografts. METHODS: Eighteen millimeter grafts were used for bridging an 18-mm defect in the rat sciatic nerve. A total of 57 rats were randomly divided into three groups: (1) autograft (Group 1); (2) cryopreserved isograft (Group 2); (3) cryopreserved isograft with intraneural IGF-1 administration (Group 3). 12 weeks after surgery, functional recovery (Sciatic functional index [SFI], Swing speed [SS], nerve conduction velocity [NCV], amplitude of compound motor action potentials [CMAP], and gastrocnemius muscle index [GMI]) and nerve regeneration (myelin sheath area, total fiber counts, fiber density, and fiber width) were all evaluated. RESULTS: The intraneural injection of IGF-1 significantly improved SFI and SS at weeks 10 and 12. There were no statistical differences between Groups 1 and 3 in any of the SFI or SS evaluations. CMAP and NCV in Group 1 were significantly higher than in Groups 2 and 3, and Group 3 had significantly higher CMAP and NCV compared to Group 2. No significant differences were found in fiber width. The number of nerve fibers, percentage of myelinated fibers, fiber density, and GMI was significantly higher in Group 1 compared to Group 2, but no significant differences were found between Groups 1 and 3. CONCLUSION: The results show that intraneural injection of IGF-1 in an 18 mm cryopreserved isograft improve axonal regeneration and functional recovery.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Nerve Regeneration/drug effects , Nerve Transfer/methods , Sciatic Nerve/injuries , Sciatic Nerve/transplantation , Animals , Cryopreservation , Isografts , Male , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Transplantation, Autologous
16.
Rev Esp Cardiol (Engl Ed) ; 72(11): 899-906, 2019 Nov.
Article in English, Spanish | MEDLINE | ID: mdl-30477951

ABSTRACT

INTRODUCTION AND OBJECTIVES: Circulating galectin-3 (Gal-3) is elevated and significantly correlates with all-cause and cardiovascular mortality in patients with heart failure. However, the relationship between serum Gal-3 and heart transplant (HT) outcomes is unclear. The aim of this study was to describe the longitudinal trend and prognostic value of Gal-3 levels after HT. METHODS: Banked serum samples were available from 122 HT recipients, collected before transplant and at 1, 3, 6, and 12 months posttransplant. Gal-3 levels in these serum samples were measured by enzyme immune assay. Multivariable Cox regression was performed to determine the prognostic value of 12-month posttransplant Gal-3 serum levels. The primary endpoint was the composite variable all-cause death or graft failure over long-term posttransplant follow-up. RESULTS: Circulating Gal-3 concentration steadily decreased during the first year after HT (median values: pretransplant, 19.1 ng/mL; 1-year posttransplant, 14.6 ng/mL; P<.001). Circulating Gal-3 levels 1-year posttransplant were associated with an increased risk of all-cause death or graft failure (adjusted HR per 1 ng/mL, 1.04; 95%CI, 1.01-1.08; P=.008). The predictive accuracy of this biomarker was moderate: area under the ROC curve, 0.72 (95%CI, 0.60-0.82; P<.001). CONCLUSIONS: Circulating Gal-3 steadily decreased during the first year after HT. However, 1-year posttransplant Gal-3 serum levels that remained elevated were associated with increased long-term risk of death and graft failure.


Subject(s)
Galectin 3/blood , Graft Rejection/blood , Heart Transplantation , Biomarkers/blood , Cause of Death/trends , Female , Follow-Up Studies , Graft Rejection/epidemiology , Humans , Incidence , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , Risk Factors , Spain/epidemiology , Time Factors
17.
Cell Tissue Bank ; 19(4): 507-517, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29700649

ABSTRACT

The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4',6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method.


Subject(s)
Albumins/pharmacology , Cryopreservation , Schwann Cells/cytology , Sciatic Nerve/physiology , Animals , Cell Survival/drug effects , Humans , Rats, Inbred Lew , Rats, Wistar , Schwann Cells/drug effects , Schwann Cells/ultrastructure , Sciatic Nerve/drug effects , Staining and Labeling
18.
Plant Physiol Biochem ; 118: 55-63, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28618373

ABSTRACT

Strawberry (Fragaria × anannasa Duch.) is one of the most important soft fruit. Rapid loss of firmness occurs during the ripening process, resulting in a short shelf life and high economic losses. To get insight into the role of pectin matrix in the softening process, cell walls from strawberry fruit at two developmental stages, unripe-green and ripe-red, were extracted and sequentially fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material as well as the per fresh weight contents of the different fractions decreased in ripe fruit. The largest reduction was observed in the pectic fractions extracted with a chelating agent (trans-1,2- diaminocyclohexane-N,N,N'N'-tetraacetic acid, CDTA fraction) and those covalently bound to the wall (extracted with Na2CO3). Uronic acid content of these two fractions also decreased significantly during ripening, but the amount of soluble pectins extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruit. Fourier transform infrared spectroscopy of the different fractions showed that the degree of esterification decreased in CDTA pectins but increased in soluble fractions at ripen stage. The chromatographic analysis of pectin fractions by gel filtration revealed that CDTA, water and, mainly PAW polyuronides were depolymerised in ripe fruit. By contrast, the size of Na2CO3 pectins was not modified. The nanostructural characteristics of CDTA and Na2CO3 pectins were analysed by atomic force microscopy (AFM). Isolated pectic chains present in the CDTA fractions were significantly longer and more branched in samples from green fruit than those from red fruit. No differences in contour length were observed in Na2CO3 strands between samples of both stages. However, the percentage of branched chains decreased from 19.7% in unripe samples to 3.4% in ripe fruit. The number of pectin aggregates was higher in green fruit samples of both fractions. These results show that the nanostructural complexity of pectins present in CDTA and Na2CO3 fractions diminishes during fruit development, and this correlates with the solubilisation of pectins and the softening of the fruit.


Subject(s)
Cell Wall/metabolism , Fragaria/growth & development , Fruit/growth & development , Pectins/metabolism
19.
J Am Coll Cardiol ; 69(4): 423-433, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28126160

ABSTRACT

BACKGROUND: Heart failure (HF) is a complex syndrome associated with a maladaptive innate immune system response that leads to deleterious cardiac remodeling. However, the underlying mechanisms of this syndrome are poorly understood. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a newly recognized innate immune sensor involved in cardiovascular diseases. OBJECTIVES: This study evaluated the role of NOD1 in HF progression. METHODS: NOD1 was examined in human failing myocardium and in a post-myocardial infarction (PMI) HF model evaluated in wild-type (wt-PMI) and Nod1-/- mice (Nod1-/--PMI). RESULTS: The NOD1 pathway was up-regulated in human and murine failing myocardia. Compared with wt-PMI, hearts from Nod1-/--PMI mice had better cardiac function and attenuated structural remodeling. Ameliorated cardiac function in Nod1-/--PMI mice was associated with prevention of Ca2+ dynamic impairment linked to HF, including smaller and longer intracellular Ca2+ concentration transients and a lesser sarcoplasmic reticulum Ca2+ load due to a down-regulation of the sarcoplasmic reticulum Ca2+-adenosine triphosphatase pump and by augmented levels of the Na+/Ca2+ exchanger. Increased diastolic Ca2+ release in wt-PMI cardiomyocytes was related to hyperphosphorylation of ryanodine receptors, which was blunted in Nod1-/--PMI cardiomyocytes. Pharmacological blockade of NOD1 also prevented Ca2+ mishandling in wt-PMI mice. Nod1-/--PMI mice showed significantly fewer ventricular arrhythmias and lower mortality after isoproterenol administration. These effects were associated with lower aberrant systolic Ca2+ release and with a prevention of the hyperphosphorylation of ryanodine receptors under isoproterenol administration in Nod1-/--PMI mice. CONCLUSIONS: NOD1 modulated intracellular Ca2+ mishandling in HF, emerging as a new target for HF therapy.


Subject(s)
Calcium/metabolism , Heart Failure/metabolism , Nod1 Signaling Adaptor Protein/physiology , Animals , Arrhythmias, Cardiac/metabolism , Calcium/physiology , Disease Progression , Humans , Mice , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Up-Regulation
20.
Cell Tissue Bank ; 18(1): 1-15, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27830445

ABSTRACT

Regenerative medicine, based on the use of stem cells, scaffolds and growth factors, has the potential to be a good approach for restoring damaged tissues of the central nervous system. This study investigated the use of human amniotic mesenchymal stem cells (hAMSC), human amniotic epithelial stem cells (hAESC), and human Wharton's jelly mesenchymal stem cells (hWJMSC) derived from human umbilical cord as a source of stem cells, and the potential of the human amniotic membrane (HAM) as a scaffold and/or source of growth factors to promote nerve regeneration. The hAMSC and hAESC obtained from HAM and the hWJMSC from umbilical cords were cultured in induction medium to obtain neural-like cells. The morphological differentiation of hAMSC, hAESC and hWJMSC into neural-like cells was evident after 4-5 days, when they acquired an elongated and multipolar shape, and at 21 days, when they expressed neural and glial markers. On other way, the HAM was completely decellularized without affecting the components of the basement membrane or the matrix. Subsequently, hAMSC, hAESC and hWJMSC differentiated into neural-like cells were seeded onto the decellularized HAM, maintaining their morphology. Finally, conditioned media from the HAM allowed proliferation of hAMSC, hAESC and hWJMSC differentiated to neural-like cells. Both HAM and umbilical cord are biomaterials with great potential for use in regenerative medicine for the treatment of neurodegenerative diseases.


Subject(s)
Amnion/cytology , Epithelial Cells/cytology , Mesenchymal Stem Cells/cytology , Neurogenesis , Tissue Engineering/methods , Umbilical Cord/cytology , Amnion/chemistry , Cell Proliferation , Cells, Cultured , Female , Humans , Nerve Regeneration , Neurodegenerative Diseases/therapy , Neurons/cytology , Tissue Scaffolds/chemistry , Wharton Jelly/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...